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Some Properties of Random Ising Models 
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We consider an Ising model with random magnetic field h i and random nearest- 
neighbor couplings Jij. The random variables h i and Jij are independent and 
identically distributed with a nice enough distribution, e.g., Gaussian. We will 
prove that (i)at high temperature, infinite volume correlation functions are 
independent on the boundary conditions and decay exponentially fast with 
probability 1 and (ii) for any temperature with sufficiently strong magnetic field 
the correlation functions are again independent on the boundary conditions and 
decay exponentially fast with probability 1. We also prove that the averaged 
magnetization of the ground state configuration of the one-dimensional Ising 
model with random magnetic field is zero, no matter how small is the variance 
of the h i . 

KEY WORDS: Spin systems; cluster expansion; spin glasses; random field 
Ising models. 

1. DEFINITION OF THE MODEL AND STATEMENT 
OF THE RESULTS 

We cons ider  an Ising mode l  def ined by the fo l lowing  H a m i l t o n i a n :  

H = - -  X/" J i j a i a a - - e  ~ h ia  i (1) 
(/j) ~X* leA 

Here,  A c 2 d  and A is the un ion  of  A and the set c~A of  its neares t  

ne ighbors ;  the values  o f  the spins on ~3A are fixed and de te rmine  the 

b o u n d a r y  condi t ions .  I f  X is a set o f  sites, X *  denotes  the set o f  its nearest-  
ne ighbor  bonds.  
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If F(a) is a function of the spins, its thermal expectation is defined by 

1 
(F(a))9'A = Z~,----~ (F(a) e ~nA)o (2) 

where (.)o is the normalized Ising product measure: 

1 
( ' ) o -  2 m, ~ (3) 

(cri= 4- l ) i  A 

and Z~, A is the partition function. 
The couplings {Ju} are independent and identically distributed random 

variables whose distribution dp(J) satisfies the following condition: 

f cl~(J) e <sq < oo Va > 0 (4) 

The magnetic field variables {h;} are independent and identically distributed 
random variables with a symmetric distribution such that P[h = 0] = 0, i.e., 
such that there is no "mass" at zero. 

Disorder averages (i.e., expectations with respect to the Ju s and the his ) 
are denoted by IF [. ]. The supremum with respect to the spin variables will be 
denoted by [[. [[~. 

We will prove the following results. 

Theorem 1. Let fl < fl0, where fl0 is a constant depending only on the 
parameters of the model. Then the following cluster property holds uniformly 
inA: 

E[KF ;  G)~,A I1 -- E[I<FO> ,A - <F)~,A<G)~,A I] -4< 

where 

dF,a= min ][i--ill 
i ~ s u p p t F  
j ~ s u p p t  G 

is the distance between the supports of F and G. 
Moreover, the following infinite volume limit exists and is independent 

on the boundary conditions: 

((F})~= lim ~-[(F)~,A ] 
A -~Z d 

while thermal expectations (')~,A satisfy the cluster property and have an 
infinite volume limit independent of the boundary conditions with 
probability 1. 
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Theorem 2. Let e > e 0, where e0 is a constant depending only on the 
parameters of the model. Then the same results proved in the high- 
temperature case hold. Moreover, the infinite volume averaged magnetization 
vanishes for any choice of the boundary conditions. 

Clearly Theorem 1 is trivial if the couplings are bounded random 
variables. In this case in fact we could prove converge of the cluster 
expansion uniformly in the couplings. 

The technique used to prove Theorems 1 and 2 is a cluster expansion of 
the type originally developed in Ref. 1. [For a different approach to cluster 
expansions, see Seiler (Ref. 1).] The fact that we are considering a lattice 
spin system instead of a continuum quantum field simplifies most of the 
expansion. 

In addition, we will prove the following result for the one-dimensional 
Ising model with random magnetic field. 

Theorem 3. Let 

L L 
HL=-J ~ oir~i+, - ~  ~. hioi 

i----L 1 i= L 

O L _ I : 0 " L + ] : + ] ,  G i : •  f o r i = - - L . . . L  

Let the h i be i.i.d. Gaussian random variables of mean zero and variance 1, 
and for each realization {hi of the random magnetic field let {a*(h)} be the 
ground state (i.e., zero temperature) configuration of H L. Then for each 
e > 0 we have 

E[G*]-~ 0 as L ~ o o  

and 

E[a*a* ] <~ 6e -mli-jl uniformly in L 

2. THE CLUSTER EXPANSION: HIGH-TEMPERATURE CASE 

Theorem 1 follows from a standard high-temperature expansion. Here 
the problem is that, the couplings being unbounded random variables, there 
are regions where they are so large that to expand there seems hopeless. The 
point is that this happens with a small probability, so upon averaging our 
expansion converges. 

To implement this idea, we introduce the interpolating parameters 
{Sb}b~*  , S b ~ [0, 1] in the Hamiltonian: 

u~(s) = -  Z sJ, jo,  o j - ~  Y' h~o~ 
(U)r i~A 
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We define, for F c  (7/d) *, 

(sr)b = s b if b E F  

= 0  if bCiF 

In other words, HA(S r) has "zero boundary conditions" (i.e., no coupling) on 
r c = ( z 0 * \ r .  

Let moreover 

1 

Ob- 0sb' b~r 

If X c A ,  (X)r will denote the family of connected components of X 
obtained by deleting from X* all the bonds but the ones in F. 

By a standard technique (see Ref. 1) we then obtain the following 
expansion: 

(F)~,a = Z * Za~x ( dsr C~r(Fe-~Ux{sr))o 
x.r Z a 3 

where Y~*,r means sum over X c A ,  F c X *  such that X is connected and 
each connected component of (X)r has nonempty intersection with the 
support ofF.  

We have the following proposition. 

Proposition 1. Under the hypotheses of Theorem 1 the following 
cluster expansion: 

F_[I(F),,AI] : ~ *  E [ Za--~y- f ds r ~gr(Fe-~Hx{sr')o ] 
x,r [ Za 

converges uniformly in A exponentially fast, that is, 

3 ,E fdsrar(Fe_ ,,x{, ,) ~ 
x,r [ Za 

IXl>n 

where K 1 is independent on A and K 2 is independent on F and A. 

The proof is a straightforward consequence of Lemmas 1, 2, and 3 
below. 

Theorem 1 is proved along the same lines of Proposition 1, the only 
difference being that we need to use duplicate variables to obtain the bound 
for the truncated correlation functions. It is therefore useful to outline its 
proof. 
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Proof of Theorem 1. Consider two independent, identical copies of 
the same system defined by (1), (2), (3); we denote by a (l) (resp. a (2)) the 
spins in the first (resp. second) system�9 We define "duplicated" expectations 
as follows: 

\(dup) L(~}I)=+I,o-J2)=_I_I)hjeA e ~2)-~2~ 
� 9  = z~u~) (5) 

where H(a ~) = HA(CT(a)), a = 1, 2 and clearly Z(a duo) = Z 2 . 
The duplicated expectation so defined is clearly symmetric with respect 

to the symmetry ~ which sends variables of each system into variables of the 
other. 

If F is a function of the spins, we denote by F (1), F (2) its representatives 
in each subsystem. 

We have 

2(F; G>~, A = ((F(I) _F(2))(GO) _ ,_,~(2"~\('~uo)j/~,A 

both terms inside the brackets are odd under ~ and their product is even. 
Now, we apply the cluster expansion to (5): 

2E[I<F; G>~,al] 

= 2 E  [ ~ *  Z~x f dsr C~r<F,G,e_~,~,(sr,_~#;,(,r,)~dup, ] (6) 
x,r ZZa 

where F '  = F  ~  (2), G ' =  G (1) -  G (2). Now each term in the cluster 
expansion is even under ~;  moreover, since the Hamiltonians H~xl)(sr), 
H~xZ)(s r) do not couple through F c, each term in the cluster expansion is 
invariant under a ~ transformation applied separately on each connected 
component of (X). Since F ' ,  G' are odd, it follows that each nonzero term in 
the expansion must have connected components each connecting both 
suppt F and suppt G. Hence, for each nonzero term in (6) it must be IX[ >/ 
( c o n s t )  d F ,  c . 

Next, we show how to bound (6). We have 

(6)~2x~,r  E [ Z2 

We apply Schwartz' inequality and by Lemmas 1, 2, and easy variant of 
Lemma 3, together with the fact that IX] ) ( cons t )dp ,~ ,  we prove that 

E[I<F; G>~,a t] ~< c'e - ~ ' ~  (7) 
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The statement with probability 1 follows from an easy argument. If J -  is a 
set of nonzero measure in J space where the cluster property does not hold 
then 

E[ce -m(J)d] >1 c"e-mdp[j -c] q- C'"e-m'dp[J -1 

with m '  < m, so that (7) does not have a chance to hold. It follows that 
P [ S ]  = 0 .  

The existence of an infinite volume limit independent of the boundary 
conditions is now trivial to prove. This completes the proof. �9 

We now present the three main technical estimates used in the above 
proof. 

Lemma 1. 

Lemma 2. 

~ *  1 = k3 ek4n 
X,F 

IX/=n 

Lemma 3. 

[(Za~Xtr]l/r~ekslXl 
\ZA  / 

where K s ~ oo as fl --* 0. 

The r powers appear because we have to apply the Schwartz 
inequalities to separate the various J-dependent terms in the expansion. 

The proof of Lemma 1 is standard (see Ref. 1, first reference, Prop. 5.1) 
and Lemma 3 will be proven in Section 5, so we prove now only Lemma 2. 

Proof of Lemrna 2. This is a simple stability estimate, made even 
simpler by the boundedness of the spins. In fact we have 

Z A (ij)~X--* 

Lemma 2 then follows by condition (4). This completes the proof. �9 
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3. THE CLUSTER EXPANSION: LARGE FIELD CASE 

The problem in applying the cluster expansion is that the inverse 
temperature fl is no longer small and we must find convergence factors 
elsewhere. A simple calculation shows that, if the field is large, the 
magnetization should follow the field. In fact, by summing over a j =  +1, 
j 4: i, we find 

(sinh(fl Y~/:llt_ ill= 1 Juat + flehi))~,A\lil 
(ai)~'a = (cosh(fl Zl:l!t-ill:l Jnat + flehi) )~,A\lil 

and thus (a;)~, A has the same sign as h i with a probability near 1 by 
choosing e large enough. 

We remark also that f:[(ai)~,a] is clearly zero for all fl, e, A if we have 
free boundary conditions, by symmetry. Hence, the second part of 
Theorem 2 is simply a corollary of the first part: if we can show that 
~:[(ai)~,a] has a unique infinite volume limit independent on the boundary 
conditions, then this limit has to be equal to the one obtained by taking free 
boundary conditions, which is zero by the above argument. 

Since heuristically the magnetization "follows the field," it is natural to 
consider the following change of variables: 

where 

~ i = a i - f i i  

/~; = sign(hi) if [hi] > B 

= 0  if Ihil<..B 

~'i should be "small" if the field is large, and therefore a cluster expansion in 
the ty variables should converge. 

We introduce a new normalized product measure: 

(f(l/J))Oo=Z(fl'~'h)-I ~ ([I eS~h~*~) f (w)  
(Oi= 5:1 --/qi)ieA i~A 

where z(fl, e, h) is  a normalization. 
Next, for G(qJ) a function of the q/variables we define 

1 e_~)~d - 

(U)r i~A 
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with the obvious meaning of Z~, a. We dropped from the Hamiltonian H~ 
terms which are "constant" (i.e., independent on ~,), since they would cancel 
upon normalization. 

Clearly, these expectations have been defined in such a way that 

(F(qt +/~)>~,a = (F(a)>~,a 

We introduce, as usual, interpolating parameters in the Hamiltonian: 

(ij) EA-* i e a  

Again, we have a cluster expansion in the ~, variables like the one in the 
preceding section: 

(F(~t + I~))~ a = ~ * Z~aVr I dsr c~r(F(g' + s e-eUx~(sr)>~176 
' x,r Z~A 

As in the high-temperature case, the convergence of the cluster expansion for 
E[(F)~,A ] and Theorem 2 follow from Lemmas 1, 4, and 5 below, 

Lemma 4: 

\ Z~a ] <~ eK,' xl 

Lemma 5: 

E [ (~ dsr c~r(F(lff + [~) e-~n~ ) r] 1/r ~ K1oer111xl -KI21r I  

where K 1 2  --+ oO a s  ~ --+ o o .  

The proof of Lemma 4 is almost identical to the proof of Lemma 2. 
Lemma 5 will be proved in the following section. 

4. THE MAIN ESTIMATES 

In this section we finish the proof of the convergence of the cluster 
expansion developed in Sections 2 and 3 by the proving Lemmas 3 and 5. 

Proof of Lemmo 3. We compute the s derivatives and bound the 
result: 

<<fl,r,. ]~ Jhk " HFH~(e-~x('r)>o 
(hk)EF 
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For  some values s* of  the interpolating parameters  Hx(s r) has a minimum,  
since it is a continuous function over the compact  set [0, 1]in*l; it follows 
that we can take the supremum over the s and bound the s integrals in the 
obvious way. Next we square and take the disorder expectation, to obtain the 

bound: 

\(hk)eC I ~- [(e-~Hx(S*))4]l/2 

Then we have 

E J~,k = H ~[g4k]l/2 = eKl+lF' 
(h F (hk)~P 

and by a stability estimate whose proof  is analogous to the one of Lemma  2: 

E[ (e-13Hx(s*))~] 1/2 4 e Kl'lxl 

Summarizing,  we have obtained the following bound: 

Now, take K 6 = IrFIro~, g7 = (U2)K14 ,  and Ks=log ( l i f t  ) -  (1/2)K~ 3 
and for fl small enough we have Lemma  3 in the case r = 2. The general 
r ~> 2 case follows then easily. 

The proof  is complete. �9 

Proof of Loroma 5. The main difference with the proof  of  L e m m a  3 is 
that  we must use the fact that  ~, is in some sense small, rather than ft. 

We start computing the s derivatives as before: 

[ C~r(F(~ + fi) e-~H~(~r))o~l 

/ 
~</~tr~. Ilf(~+fi)ll~" I ]  &,, " Ile-~"~(s*)[l~ 

(hk)eF 

/ )~ 
�9 ]~I q"h tffk 

(hk)~l" O' 

where as before we minimized H x  ~ over the interpolating parameters.  
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We take the disorder expectation of the above squared and we obtain 

(( 
�9 f l2w,  IIF( ~ + fi)ll2 

Next, we apply a H61der inequality to obtain 

(h r 

The first two E[.] expectations are clearly bounded as follows: 

IF_ [ll e-~nOx(S*)116 ] 1/3 ~ e K'~lxl 

(8) 

The third factor deserves more attention�9 First of all we apply a Jensen 
inequality and a H61der inequality to obtain 

~-[(( (hk~I)~Flffhl/Ik }S)6]~-[((hk~I)~F(lffhlffk)6)i] 

Next we compute explicitly (t//12d)0~: 

e / 3 e h ( h - l ) ( a - -  1) led + e-~h{fi+l)(/7+ 1) '2d 

e-~h~(e e'h + e -B~h) 
ee ,h ( f i_  1) '2d + e-~h(/~ + 1) 12d 

e 13~h + e -~h 

l l, if Ih/~<B 

= 212d e 2/3elhl if ]hi > B 
1 + e -2~nlhl ' 

It follows that 
[ 212de-2~elhl ] 

E[( l f f l2d)0~]  = P[Ih] ~<B] + P[lh[ > B] E 1 + e -2~'lhl [hi > n 
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Now, choose B to be, e.g., ~-u2;  then the above quantity can be made as 
small as we like by choosing e large enough; this implies the bound 

where K17(e ) ~ oo as e ~ oo. 
Summarizing we have 

(8) IJF(W + '7)11  eKI61XI--(K17--KIs)IFI 

which gives Lemma 5 for r = 2 .  The general case r i > 2  is then easily 
obtained. 

This completes the proof. 

5. THE GROUND STATE OF THE ONE-DIMENSIONAL 
ISING MODEL WITH RANDOM MAGNETIC FIELD 

In this section we will prove Theorem 3. 
First we need the following easy lemma. 

Lemma 6. Let J be an interval on Z (i.e., a connected set of nearest 
neighbor sites [N, .... M]), and let c?Y ~ be its "boundary" { N -  1, M + 1 }. Let 
e (~'~ be the ground state configuration with boundary conditions as_  1 = a, 
O'M + 1 = fl (a ,  ~ = -l- 1 ) on  ~ ,  T h e n  

= H - [ o ; - , + ) ]  = o (9 )  

f_[al+'+)] >/O, E [ a l - ' - } ]  4 0 (10) 

for each i ~ ~". 

Proof of Lomma 6. (9) follows immediately by symmetry. The 
inequalities (10) follow by considering E[a~ ~'~] as limit f l ~  oo of expec- 
tations at nonzero temperature, for which the following: 

EI /o  \~+'+~] >~0 L\  i / ~ , A  

0 

holds by the F K G  inequalities. The proof is complete. [] 

Proof of Thoorom 3. Let 3 = [--L ..... L] and let a(h) be the ground 
state configuration with (+, +)  boundary conditions on 8 ~ .  Then we want 
to prove 

E[~r0(h)] ~ 0 as L --, oo 
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We define the following events: 

If  ge 1 (resp. ~2) holds, then surely a t (resp. Ok)=--1 .  Let Xa =X$" d, ,~a = 1 - Z a ,  
a = 1, 2. Let also p = P[h i < - 2 J / e ] ,  q = 1 - p. Then #bearly EL~] = qL _~ 0 
as L ~  oo. , 

We use Lemma 6 and some trivial estimates to' get 

o ~< E[aol = E[aoZ,X2] + E[aoZ~Z2J + E[ao/lZ~] + E[aos 

~< E[aoZ1Z2] + 3q L 

If  we prove E[aoZaZ2] ~< 0 we are obviously done. To this aim, we write 
ZI, Z2 as follows: 

( Xl = ~ Z ht < - - -  ; u < l: hx ) -  = 2 Zl,l 
--L<I<O ~ --L<I<O 

( X2 = ~ X hk < - - -  ; Vx > k: hx > / -  = 
O<k<~L ~ O<k<~L 

Then we can write 

XE,k 

[~ [O'0ZI'~2 ] = 2 ~[aOZl,lX2,k] 
L <~l<O 

O<k<~L 

and we want to prove 

~[G0Xl,IX2.k] ~ 0 (1 1) 

The characteristic functions Zla,  Z2,k impose ( - - , - - )  boundary conditions on 
the subinterval [1+ 1, k - 1 ]  containing 0. Therefore by L e m m a 6  and by 
some elementary considerations based on the locality of the Ising 
Hamiltonian and the independence of the his we have (11). 

The exponential decay of E[oiaj] can be easily proved by the following 
method. 

Define the following event: 

~ = 1 3 ~  [~ ,=n ,~ .~be tween iand j :  ~S~.hk < - - ~ l  
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Let also 2 = Xr 2 = 1 - 2 .  It is easily seen that ~ must contain at least a 
site k such that a h = - 1 .  The size n of the interval will be chosen later. We 
then have 

E[G,a ] = E[a;2aj] + (12) 

It is easily seen by a method similar to the one used to prove (11)that  
the first term in (12) is zero, so we are led to bound: 

E[ojo j ]  .<< E[21 

= P  [ V ~ , l ~ l = n , ~ b e t w e e n i a n d j :  ~ hk>~---~] (13) 

Choose n = c/e 2 (we are led to this choice by the idea that the scaling law 
E[a0ask ]~  E[a0ak]sl/2 ~ should hold). Then we bound (13) by considering 
only disjoint subintervals ~ of length n between i an d j  (there a r e [ / - j y n  = 
e z [i - jl/c such subintervals): 

P [ V ~  in a collection of disjoint subintervals, I~1 = L (13) ~< ,g2, k 

~ b e t w e e n  i a n d  j :  ~ hk>/--~- ] 
k~ ,5~' 

,~flisjoint, 
I~1 =n,,~between i and j 

where ~ is independent of e thanks to our choice of n. End of proof. �9 

6. CONCLUDING REMARKS 

(a) A high-temperature cluster expansion for a class of random Ising 
models was developed by G. Gallavotti in Ref. 2. 

(b) Stability estimates for a wider class of random spin systems have 
been obtained by Griffiths and Lebowitz(3); see also Ref. 4. 

(c) It is a pleasure to thank T. Spencer and A. Sokal for many helpful 
discussions and suggestions, and J. Fr6hlich for having posed the problems 
and stimulated my interest. The author also acknowledges that J. Imbrie and 
J. Fr6hlich have obtained similar results, by more powerful techniques. 
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